Tutorials ========= Interactive Jupyter notebook tutorials demonstrating ySights functionality. .. toctree:: :maxdepth: 2 :caption: Tutorial Notebooks tutorials/01_getting_started tutorials/02_network_analysis tutorials/03_algorithms tutorials/04_visualization Overview -------- The ySights tutorials provide hands-on examples for analyzing YSocial simulation data. Each notebook is self-contained with detailed explanations and runnable code examples. Getting Started --------------- **Prerequisites:** .. code-block:: bash pip install ysights jupyter matplotlib numpy scipy networkx plotly **Running Notebooks:** 1. Clone the repository: .. code-block:: bash git clone https://github.com/YSocialTwin/ysights.git cd ysights 2. Start Jupyter: .. code-block:: bash jupyter notebook docs/notebooks/ 3. Open any notebook and update the database path to your simulation file Tutorial Contents ----------------- 1. Getting Started with ySights ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Introduction to basic ySights functionality: - Initializing the YDataHandler - Loading and exploring simulation data - Working with Agents and Posts - Basic queries and visualizations - Agent interest profiles **Topics Covered:** Data loading, agent filtering, post retrieval, custom queries 2. Network Analysis ~~~~~~~~~~~~~~~~~~~ Social network extraction and analysis: - Extracting social and mention networks - Computing network metrics (density, degree distribution) - Centrality measures (degree, betweenness) - Ego network analysis - Community detection - Network visualization **Topics Covered:** Graph analysis, centrality, communities, visualization 3. Algorithms ~~~~~~~~~~~~~ Advanced analytical algorithms: - Profile similarity analysis - Visibility paradox detection - Recommendation system metrics - Topic dynamics analysis **Topics Covered:** Profile analysis, paradox detection, engagement metrics, topic spread 4. Visualization ~~~~~~~~~~~~~~~~ Creating publication-ready visualizations: - Global trends (daily activity, hashtags, emotions) - Topic evolution plots - Profile similarity visualizations - Paradox density plots - Recommendation system analysis - Custom dashboards **Topics Covered:** Plotting, dashboards, publication-quality figures Learning Path ------------- **Recommended Order:** 1. **Getting Started** - Master the basics of data loading and exploration 2. **Network Analysis** - Learn to extract and analyze social networks 3. **Algorithms** - Explore advanced analytical methods 4. **Visualization** - Create compelling visualizations of your results Each notebook builds on concepts from previous ones, so following this order provides the best learning experience. Tips for Success ---------------- - Run code cells sequentially (use Shift+Enter) - Modify parameters to explore your specific data - Read all markdown cells for context and explanations - Save modified notebooks with different names to preserve examples - Experiment with different visualization styles Next Steps ---------- After completing the tutorials: - Apply these techniques to your own simulation data - Combine multiple analyses for comprehensive insights - Create custom analyses tailored to your research questions - Explore the :doc:`api` for additional functionality Resources --------- - `Download Notebooks `_ - :doc:`api` - Complete API reference - :doc:`index` - Main documentation - `GitHub Repository `_