ysights.algorithms
YSights Algorithms
This module provides analysis algorithms for YSocial simulation data. It includes functions for analyzing agent profiles, detecting social paradoxes, evaluating recommendation systems, and studying topic dynamics.
- Submodules:
profiles: Agent profile and interest similarity analysisparadox: Visibility paradox detection and analysisrecommenders: Recommendation system metrics and evaluationtopics: Topic spread and adoption analysis
Example
Using algorithms to analyze simulation data:
from ysights import YDataHandler
from ysights.algorithms import (
profile_topics_similarity,
visibility_paradox,
engagement_momentum
)
# Initialize data handler
ydh = YDataHandler('path/to/database.db')
network = ydh.social_network()
# Analyze profile similarity
similarities = profile_topics_similarity(ydh, network)
# Detect visibility paradox
paradox = visibility_paradox(ydh, network, N=100)
print(f"Paradox detected: {paradox['p_value'] < 0.05}")
# Calculate engagement momentum
momentum = engagement_momentum(ydh, time_window_rounds=24)
See also
ysights.models: Data models and database interfaceysights.viz: Visualization functions
Modules
Visibility Paradox Analysis |
|
Agent Profile Analysis |
|
Recommender System Metrics |
|
Topic Analysis Algorithms |